
The Live Web Series
From Personal Computers to Personal Clouds

The Advent of the Cloud OS

Phillip J. Windley, Ph.D., Kynetx

Other Authors in this Series
Craig Burton, KuppingerCole
Scott David, K&L Gates, LLP
Drummond Reed, Respect Network Corp.
Doc Searls, The Searls Group

April 2012

The Live Web Series sets forth a vision for the future of the Internet and our interactions on it.
This paper is the first paper in that series. Future papers in this series will build upon the ideas
presented here to show how personal clouds form a foundation for richer and more satisfying
online applications and experiences.

There’s no doubt that clouds are big business. A 2011 report from research firm Gartner
(http://www.gartner.com/it/page.jsp?id=1739214) put worldwide software as a service (SaaS) revenue
at $12.1 billion, a 20.7 percent increase from 2010 revenue of $10 billion. The SaaS-based
delivery will experience healthy growth through 2015, when worldwide revenue is projected to
reach $21.3 billion. SaaS is just one component of the overall cloud services sector which a
2010 Gartner Research report projected to grow to $148.8 billion by 2014.

While much of the growth in cloud computing is in the enterprise space—especially
infrastructure and platform plays like Amazon and Rackspace—there is significant activity in the
area of personal cloud computing. Point solutions like Dropbox along with more holistic
offerings like Apple’s iCloud and Google’s suite of products are all part of the personal cloud
space.

Through their personal cloud offerings, companies like Apple , Google , and Facebook vie
for the attention of Internet users. Apple is slightly different than the other two since their users
are their customers. Apple uses their cloud offering as a way to make your Apple devices more
useful. On the other hand, Facebook and Google are literally after your attention because user
attention is what ad-supported companies sell to their customers, the ad buyers.

While offerings in the personal cloud space provide real utility for users, they are limited in
several important ways.

First, each of these offerings is an appliance. In other words, they provide specific functionality
with only limited features. Think, for example, of the difference between a DVD player and a
tablet computer. The DVD player is certainly a computer, but it’s a computer with a specific
function—an appliance. In contrast the tablet is nearly infinitely extensible and will take on
different capabilities as its owner updates it, installs apps, configures it, and links it with other
services.

TM TM TM

Second, these personal cloud offerings are silos, standing alone and apart with only limited
interconnectivity. Users might be able to export documents or import calendars, but users do
not have unfettered access and use of their data. Interactivity is implemented on an “as the
market demands” basis rather than according to the user’s individual needs.

We contrast the current view of personal clouds with one where personal clouds are the
successor to the personal computer. In the personal-cloud-as-personal-computer model,
owners of a cloud control it in the same way they control their computer. They decide what apps
to install, what services to engage, and how and where the data is stored.

For a better understanding of why this is desirable and leads to increased opportunity and
power, we need to explore how we interact online today and how we could do it differently. In
original conception, the Internet was a network of peers where each spoke TCP/IP and had an
IP address. (Aside: We’re stretching things slightly here and ignoring the idea that the Internet
was a network of networks with TCP being only one of many transport protocols. But that was
more of a political sop that helped gain acceptance of IP than anything real.) Of course, now
most things “on the net” have non-routable NAT’d addresses. The world would be much
different if the original architecture had persisted.

The result of this shift is a split between “servers” where the real work is done and “clients” that
are dependent on servers. Doc Searls has labeled this the cow-calf model
(http://blogs.law.harvard.edu/doc/2011/04/02/a-sense-of-bewronging/) .

The Calf-Cow Model

Doc and David Wienberger (http://www.hyperorg.com/blogger/) wrote about this eloquently in 2003 in
an essay entitled World of Ends (http://www.worldofends.com/) . In that essay, they say:

When Craig Burton describes the Net’s stupid architecture as a hollow sphere
comprised entirely of ends (http://www.searls.com/burton_interview.html) , he’s painting a
picture that gets at what’s most remarkable about the Internet’s architecture: Take
the value out of the center and you enable an insane flowering of value among the

connected end points. Because, of course, when every end is connected, each to
each and each to all, the ends aren’t endpoints at all.

And what do we ends do? Anything that can be done by anyone who wants to
move bits around.

Email is a good example of this principle at work. Email is delivered on the ’Net using the SMTP
protocol. Phil has an email server that runs in the cloud that understands SMTP. It functions as
his “end” for email online. What’s better, he didn’t have to stand up a Linux box and install
Sendmail to get it. Google runs it for him and he just uses it: email-as-a-cloud-service.

Personal Clouds are Virtual Machines

Personal clouds that are akin to personal computers will give people other “ends” on the
Internet. This more expansive vision of what a personal cloud can be is empowering because
personal clouds will

change how we relate to everything in our lives
rearrange how we buy and sell products and services
revolutionize how we communicate with each other

You might think that this is a tall order. But we think there are good arguments why many of the
futures we’re expecting are best supported—maybe can only be supported—by personally
controlled, general purpose computers that operate in the clouds. Let’s take them in turn.

Change how we relate to everything in our lives—As more and more products and services
go online, our capacity to control them and interact with them will depend on the compute
power we can bring to bear on the problem. The current model is to turn the device into a server
and build an iPhone app as it’s client. For example, is this is how the Nest thermostat works.
That works great when there’s only a few or until you want two of these products to start
interacting with each other. The future will require any-to-any interactions that can’t be
supported by special purpose apps on a smartphone. Applications running in the cloud,
however, can use protocols to mediate the interaction in a more general way
(http://www.windley.com/archives/2012/03/ways_not_places.shtml) .

Rearrange how we buy and sell products and services—For new conceptions of online
commerce like VRM (http://cyber.law.harvard.edu/projectvrm/Main_Page) to work, people need
independent, autonomous agents who will represent them in transactions. The only viable place
we can imagine these agents operating is in some kind of personal cloud.

Revolutionize how we communicate with each other—Giving everyone customizable,
computationally complete ends on the Internet also provides us with more flexible means of
interacting with each other and the services we use. A personal cloud can have an infinite
number of incoming and outgoing “channels” for communication, meaning that you can
dedicate one or more channels to anyone or anything. Independent channels have three
important properties:

Management independence—If a contact starts spamming you with messages you don’t like,
you can simply delete the channel and they’re gone—without impacting any other
communication channel you’ve established.
Permission independence—You can give different channels to each contact and set priorities
and permissions on the allowed notifications.
Response independence—If two vendors have different channels to contact you, you can treat
them differently and even contextually. For example, you might want to see commercial
messages from flower shops only in the weeks leading up to Valentines Day, Mother’s Day and
your wife’s birthday and then only until you purchase something.

Personal clouds needn’t be complex to set up or manage for them to have significantly more
power than the cloud appliances that companies offer people today. We envision systems that
are no more complicated than a smartphone that offer the features and benefits described
above. Indeed, such systems exist today.

The Personal Space

Lately there’ve been a lot of terms thrown around related to personal data: personal data store,
personal data service, personal data locker, and so on. All of the forgoing terms, however, miss
the key concept of doing. The companies and projects creating technology in this space are all
after the same goals: giving people more control of the their data and empowering them to do
new things with it.

We distinguish between the ability to securely store and use personal data from the ability do
something with data. After all, if you’re going to create a place to store personal data, most of
the value lies in making use of it. KuppingerCole calls these systems Live Management
Platforms. KuppingerCole focuses on the idea of informed pull as a complement to controlled
push as a distinguishing feature between a Life Management Platform and personal data stores.

Our use of personal cloud is meant to convey a similar distinction between a place where data is
security stored and a place that acts for the user. Certainly, personal data will be a key
component of a personal cloud—managing a modern life requires enormous quantities of data.
Users might choose various and multiple places to keep their personal data. A personal cloud
should be able to use, manage, and protect all of them. But a personal cloud is more than a
personal data store in exactly the same way that a personal computer is more than a file system.
A personal cloud is a virtual machine that operates 24/7 on behalf of it’s owner. We anticipate
people having multiple personal clouds. The remainder of this paper will describe the
architecture that we envision for these personal clouds, using the metaphor of a PC operating
system as a road map for understanding the development of an operating system for the
personal cloud.

Personal Clouds Need an Operating System
If you need an OS for you laptop, your phone, and your tablet, why don’t you need one in the
cloud? Our current conception of how people use the cloud has significant limitations that could
be mitigated with the introduction of a cloud-based operating system that people can look at as
their “virtual computer” that’s always on, always working.

The IBM PC with PC DOS

Long ago there was something called a “microcomputer.” The name seemed natural enough
given that they were smaller than the “minicomputers” of the time. The first examples were
crude machines that required significant technical expertise of the user. As microcomputers
became easier to use, they took on a new name based on the feeling that they produced—they
became “personal.” One of the hallmarks of a “personal computer” is its flexibility. Personal
computers are capable of doing what their owner wants and doing different things at different
times.

This flexibility is provided by a utilitarian piece of software call the “operating system” that sits
between the computer and the software it runs. We’re all familiar with operating systems
because they give the personal computer it’s personality and define most of what the user
thinks of as “the computer.” Operating systems run programs, manage stored data, and provide
common services like printing or access to networks.

Operating systems create a virtual machine for the applications

Today’s cloud offerings aren’t nearly as utilitarian as a personal computer. A personal computer
—be it a desktop, laptop, tablet, or even smartphone—is vastly more powerful and flexible than
that Apple’s iCloud, Google Docs, or Facebook—despite the latter’s programming platform and
API. This isn’t simply a matter of waiting for Google Docs and other personal cloud offerings to
mature. Their architecture has a fundamental limitation by not having an operating system. Let’s
explore why.

Operating Systems

We wouldn’t be stretching belief to call the operating system the most important piece of
software on your computer. The operating system sits between the hardware and the
applications. The operating system presents a virtual machine that is orders of magnitude easier
to program and interact with than the bare metal of the hardware. For example, here are a few
things that operating systems do:

Identity—All modern operating system provide identity as a fundamental service of the operating
system, tracking users, permissions, preferences, and other important attributes. Our
conceptions of how computers work are based on this knowledge of our identity.
Program execution—operating systems present a method of running programs that is very
different from the underlying machine. First, the OS keeps track of metadata showing that the
data is a program. Lower down, the OS is responsible for loading, threading, and other details of
how programs actually get run. At the UX level, the OS is presenting a view of applications that
enables user selection, configuration, and control.
Data abstraction—operating systems present a view of data that is very different from how it’s
actually stored. For the most part, disks have tracks and sectors. Getting data on or off the disk
involves knowing specific locations of the data and stringing it together into the entire object.
What’s more, the disk doesn’t store any metadata as a matter of course. The disk doesn’t know
if the data it’s returning is a JPEG or an MP3 file. Finally, the disk doesn’t have any concept of
data ownership and permissions. An operating system, in contrast, provides applications with an
abstraction that let’s data be accessed in a hierarchical manner and provides all kinds of
metadata so that applications know what they’re getting, when it was created, who owns it, who
can read it, who can write it, and so on. The operating system manages permissions and access
to data.
Communications—operating systems similarly abstract communications. Sockets, among the
most primitive of OS communication services, are orders of magnitude easier to use than
working with the Wi-Fi or networking hardware directly. And of course, operating systems
present even more abstract ways of communicating when you consider the myriad network
services present in any modern OS. What’s more, not only does the OS present a high-level view
for programmers, but also presents the user with interfaces for easily managing various
parameters associated with networks.

Without an operating system, each application has to perform all of these complex tasks
themselves making the application more difficult and costly to create. Moreover, as a
consequence, each applications will end up performing similar functions differently, making
them difficult to use. Imagine, for example, having to configure the network for each application
using different concepts, interfaces, and so on. The operating system provides a virtual machine
that presents a consistent interface to both users and programs and is both easier to use and
easier to develop applications on.

Cloud Operating System

None of today’s popular personal cloud offerings are as powerful or flexible as a personal
computer, but they could be—if they had an operating system. A cloud operating system (COS)
would be capable of the following:

keep track of identity information, attributes, and preferences for the owner
run unlimited applications of the owner’s choice

store and manage the owner’s personal data no matter where it resides
provide generalized services that any application can take advantage of
mediate and abstract the usage of Web-based APIs—the libraries of the cloud

A cloud OS provides a individual, independent compute space in the cloud for everyone. This is
in stark contrast to the Web 2.0 model where individual applications are hosted on various
servers with the browser or mobile phone app as the integration point. The Web 2.0 model
leaves much to be desired:

individual applications are silos with little ability to interact with each other
relying on apps on mobile devices or browsers on computers leads to differences in
configuration and user experience and creates an over-reliance on synchronization
services—like contacting the user—are reimplemented in each application resulting in a
fractured user experience and endless configuration woes

In contrast, a cloud OS solves these problems by creating a space where computation happens
in the cloud, data access is abstracted to break down silos, and common services are always
available. In the Cloud OS model, mobile devices and computers look like very powerful
peripherals that mediate user interaction.

Let’s explore how a cloud OS can provide a place for user-controlled applications to run in the
cloud, abstract data access, and provide common services for any application to use.

The Foundational Role of Identity in a Personal
Cloud
If we’re to build personal clouds supported by a cloud operating system (COS), then we need to
understand the key services that the COS would provide to the user. Operating systems are not
monolithic pieces of software, but rather interlocking collections of services. One of the most
important things to figure out is how a cloud OS can mediate an integrated experience with
respect to authorized access to distributed online resources.

The concept of identity is foundational in modern operating systems. In Linux, for example, user
IDs (uid) and group IDs (gid) are used by the kernel to determine file and device access as well
as process ownership and control. User names and passwords are just the means of reliably
setting the user ID so that the kernel can determine access levels.

From this simple, foundational identity system and its associated access control mechanisms
grows a whole virtual world that you think of as “your computer.” When you log into a machine,
you are presented with an environment that makes sense of your files and your programs. You
control them. They’re arranged how you like them. The system runs programs just for you.
You’re work environment is highly personalized.

We don’t see this same kind of integrated, virtual experience when we’re online because there’s
no foundational concept of identity online. We struggle to provide context between different
Web sites. Numerous standards from OpenID to OAuth (http://oauth.net/) have been developed to
bridge these gaps, and we’ve come a long way, but they are not enough—not yet. In short,
people have lots of identifiers on multiple Web sites, but they have no overarching identity
context, no presence. Bridging these various systems to provide integrated access control has
been one of the most important areas of technology development over the last five years.

One of the interesting developments in access control for distributed online resources is a
project called User Managed Access (http://kantarainitiative.org/confluence/display/uma/Home) or UMA.
For purposes of this blog post we’re going to simplify it—and OAuth—a great deal, so if your an

identity expert, bear with us. UMA extends the ideas behind OAuth in several key ways. The one
we want to focus on is its introduction of a critical component that provides the overarching
authorization context we need in a cloud OS.

We would misconstrue UMA and OAuth if we were to compare them too closely to the identity
and access control systems in Linux. The online world is vastly more complicated because it is
distributed rather than centralized with myriad identity systems and methods for controlling
access. Recently OAuth has had great success in creating a standard way to control access to
APIs. We credit OAuth with much of the success APIs have had over the last several years. Still
OAuth suffers from some limitations that we think will keep it from playing the role we want in a
cloud OS.

To see why, let’s look more closely at OAuth. You’ve undoubtedly used OAuth to link services
on one Web site with another. That’s its primary use case: Site A, the “requester” wants access
to a resource being hosted on Site B—usually behind an API. The requester needs your
authorization to access the resource. You get redirected to the host where you’re asked if you
approve. If you grant access, a relationship is hardwired between the host and the requester.
You can revoke the access at any time at the host. The picture looks something like this:

OAuth users interact with the requester and host directly

In contrast, UMA provides another critical piece that acts on behalf of the user called the
authorization manager. Consider the following picture:

UMA provides an authorization manager to act for the user

The only difference in these two diagrams is the authorization manager. In the UMA diagram, the
user controls the authorization manager and it interacts with the requester and the host. The
authorization manager represents the user in the authorization transaction and its subsequent
management. Think about all the places you’ve used OAuth. Can you remember them all?
Would you know you had to sever a connection between Facebook and Twitter if you wanted to
stop some obscure status update behavior? Maybe not.

In the OAuth diagram, no system represents the user’s interests. Instead, the user is responsible
for bridging the context between the sites as well as remembering what’s been authorized and
where. With UMA’s authorization manager, the user has one place to manage these kinds of
interactions.

An authorization manager of some sort will be a key component in a COS. The
authorization manager is active, rather than passive. The authorization manager contains
policies that allow it to act as the user’s agent, even when the user isn’t present. Rather than a
single, hardwired connection, the authorization manager can be continually consulted and
access can be granted or denied based on changing conditions and contexts.

Don’t make the mistake of thinking this is just about identity. In fact, it’s not really about
identifiers and associated attributes at all. Identity is important because it forms the skeleton of
data. The issue is how identity allows permissioned, controlled access to distributed resources.
We don’t have to unify identifier systems—although we may need to abstract them—to achieve
our purpose. One of the key features of UMA is it’s ability to offer fine-grained access control to
any online resource—not just APIs—regardless of the underlying identity systems and their
credentials. For a complete discussion of how UMA, OAuth and OpenID Connect are related
and where they differ, we recommend this blog post from Eve Maler, the force behind UMA
(http://blogs.forrester.com/eve_maler/12-03-12-a_new_venn_of_access_control_for_the_api_economy) .

Regardless, when we contemplate an UMA-mediated experience from the user’s perspective,
we think they’ll view UMA as providing a personal context to their online interactions. They’ll
view that personal context growing out of themselves because something knitted their various,
fractured online identities together. The same real-world person will be at the heart of all this
regardless of the various fractured credentialing and permissioning systems that underlie it. Just
as the personal computer operating system helped create a coherent computing experience in
the pre-networked environment, so too can similar arthitectures provide that greater cohesion in
the networked environment. That greater cohesion is pereived by the user as greater “identity
integrity”, and indeed it provides a more reliable interface for users with other resources and

users in the network.

UMA and its provision for an authorization manager is exactly the kind of development that
highlights what kinds of utility a cloud OS provides. UMA is just one example of where people
are starting to realize that users need systems that act on their behalf to help them manage their
interactions. People need systems in the cloud that represent them and what they want done.
Having Web sites and APIs is not sufficient
(http://www.windley.com/archives/2012/03/ways_not_places.shtml) . A cloud OS goes beyond mere
hosting to a system of autonomous agents acting against policy to represent people in the
cloud.

Of course tackling authorized access to online resources is only the first step. Our interest is in
using these systems to control online data and programs so that the user effectively has a
virtual online presence that represents her, manages her data regardless of where it may be
stored and provides real leverage, so she can get more done with less effort, risk, and cost.

Data Abstractions for Richer Cloud
Experiences
As we discussed earlier, one of the primary services of a cloud OS (COS) would be data
abstraction. Traditional operating systems provide data abstraction services by presenting
programs and users with a file system view of the data stored in the sectors of the disk.

We have the same kind of data abstraction opportunities in the cloud, although we aren’t talking
about translating sectors into files, of course. And like the access control problem we discussed
earlier, the problems that a cloud OS faces are made more complex by the distributed location
and control of the data we want to access.

As the following chart from Programmable Web (http://www.programmableweb.com) shows, the
growth of the number of APIs has been exponential over the last 12 years.

The growth of APIs has been exponential over the last 12 years

All these APIs present a tremendous opportunity for application developers and they’ve taken
advantage of it. Many of the most interesting applications we’ve seen in mobile and online over
the last few years involved mash-ups between multiple APIs.

But with that abundance of data comes a problem: programmers have to learn the various
details of the APIs, their access methods, and error codes. If you’re just concerned about a few
that you need to create a particular app, that’s no problem and thus the API economy has
flourished. But there are legitimate uses of all this data require using not only multiple APIs, but
also APIs you may not be aware of as you’re writing your application.

Let’s take a simple example: a phone number. Suppose your phone number is stored at
Facebook, LinkedIn , Google, and several other places around the Web. A developer writing an
application to run in your personal cloud needs access to your phone number. What should she
do? Right now, there are the following options:

The developer can store your phone number in the app, giving you yet another place where your
phone number is stored. The downside is that when your number changes, there’s one more
place you’ve must remember to update. If you forget to change your number in the app, it stops
working.
The developer could pick an API, say Google, and just tell people they have to use Google. This
works as long as everyone is comfortable using Google.
The developer could choose to support a number of APIs where phone numbers are stored and
give users a choice. The downside is that the more APIs the app supports the harder
maintenance becomes.

The problem is exacerbated as the number of data elements increases—especially as they need
to come from different APIs. We talked about the issues around authorization that this causes in
the preceding section. But the problems don’t stop there. There are two important issues
beyond authorization that we need to address if we’re to abstract data access and make the
developer’s job easier:

1. How do we know where to get the data?
2. What is the format of the data and what do the elements mean?

Solving the first requires location-independent references—when a program needs access to
the user’s phone number, location-independent references provide an abstract means of finding
where that data is stored. So, for example, suppose you store your phone number in GMail
contacts and your friend stores theirs at Personal.com. The application doesn’t have to know
that or how to connect to those various services. The program references a name that means
“user’s phone number” and the data abstraction layer in the COS takes care of the messy
details.

The solution to the second involves semantic data interchange—suppose the program wants
the user’s phone number but one API stores it as “cell” and another as “mobile.” How do we
know that’s the same thing? For one or two things, it’s easy enough to create ad hoc mappings;
but that quickly gets old. The data abstraction layer makes these translations automatically.
Moreover, there can be multiple formats that are used for storing phone numbers.

A functional COS should provide the means (i.e. protocols) for performing location independent
data references as well as semantic data interchange. This abstraction layer can ensure that the
authorization, location, and semantic issues are dealt with in a consistent way that is easy for
the developer and the user. There has been much work on this problem over the last decade
ever since Tim Berners-Lee, James Hendler and Ora Lassila proposed the Semantic Web in the
May 2001 issue of Scientific American (http://www.scientificamerican.com/article.cfm?id=the-semantic-
web) . While we acknowledge that much of what has been done in the name of the Semantic
Web has seemed overly complicated to developers of modern Web services, we believe that
we’re beginning to face the exact problems that the ideas behind the Semantic Web were

TM

designed to solve.

Our choice for a protocol to provide semantic services to the COS is XDI. XDI (XRI Data
Interchange) is a generalized, extensible service for sharing, linking, and synchronizing
structured data over the Internet and other data networks using XRI-addressable RDF graphs.
XDI is under development by the OASIS XDI Technical Committee (http://www.oasis-
open.org/committees/xdi) . XDI was created to solve the aforementioned problems in a way that is:

understandable—XDI does not require pre-defined data schemas for new types of data to be
exchanged
contextual—The concept of context is built directly into the XDI graph model, so identity,
relationships, and permissions can be context-dependent
trustable—XDI identification, authorization, and relationship management are integral features of
the graph model and protocol
portable—An XDI account can be moved to a different host or service provider without breaking
links or compromising security or privacy

To see how XDI can help, let’s continue the phone number example. A developer using XDI to
reference the user’s work phone number in a KRL program might write something like this:

user = get_user_iname();

user_work_phone = xri:#{user}+work$!(+tel)

Note: The #{user} syntax shown above is meant to convey the construction of an XRI
statement using previously calculated data with a KRL beesting. Some other means of
constructing XRIs might ultimately be selected as we make concrete progress on integrating XDI
in KRL. If get_user_iname() returned =windley, the resulting XRI reference would be
xri:=windley+work$!(+tel). The +work clause provides a context for the phone number.
The $!(+tel) clause specifies that we want a single instance of a phone number, not a multi-
valued collection (in the case there’s more than one).

Location-independence is the easier property to discuss, so let’s start there. Resolving a
reference like xri:=windley+work$!(+tel) isn’t much difference in theory from how a
domain name like www.windley.com gets resolved. There is a set of known top-level
authorities who know how to determine who or what =windley is. From there, you (literally)
follow the graph to the node represented by xri:=windley+work$!(+tel). That node could
reference a data value in any API.

Of course, this kind of independence doesn’t happen for free. There’s no magic way to know
that you keep your phone number at Facebook and your friend has theirs on iCloud. But, a COS
could, based on standard mappings, know how to access a user’s profiles on various services
and provide the right link regardless of who’s running the program once the user has given her
COS access to her data at the services she uses.

Dereferencing XRIs leads to different locations

Note: The first example in the preceding figure uses an i-name that has been registered with an
XDI registry, similar to the way you would register a domain name today. But XDI does not
require the use of XDI registries. You can address any data that’s available at any URI that hosts
an XDI endpoint. This could be any webserver, as shown in the hypothetical example of
Facebook supporting an XDI interface, or it could be an XDI endpoint discoverable through an
email address using OpenID Connect. All of them work equally well, because once the discovery
process reaches an XDI endpoint, all of the data behind it is addressable using XDI.

Who’s providing all these XDI endpoints? Ideally the API owners, but that doesn’t have to be the
case. Think of the XDI endpoints playing the role that drivers play in a traditional OS. If you add
a new kind of disk with a different interface to a computer then you need the corresponding
driver.

The mapping process shows the power of semantic data interchange. Once maps between
common concepts like the user’s phone number and it’s location in various APIs are made, they
can be reused over and over again. If the API changes, changing the map in one place updates
it for every application and every user.

Moreover, maps can link common semantic concepts so that we know that cell and mobile are
the same. Semantic mapping solves three important problems:

Poorly defined semantics—an example might be incomplete phone numbers that assume a
context, like a country code.
Same syntax, different semantics—we might run into data elements that are formatted like
phone numbers, but aren’t.
Different syntax, same semantics—this occurs frequently since different APIs use different string
formats for the same concept, like phone numbers.

The good news is that we don’t have to boil the ocean to get started. Semantics has been made
way too mystical and unapproachable. This is really nothing more than the kinds of techniques a
good programmer would use to solve these problems, but standardized. A COS could provide
mappings for common data elements and common APIs, like contact data or calendars, and
make those available to developers. Adding just a few of the most common required elements
to the COS would greatly simplify many applications that need access to personal information.

COS-level data abstraction makes programs easier to write and use because:

Developers don’t have to understand the intricacies of multiple APIs.
The COS manages authorization issues freeing developers from managing the code and allowing
users greater visibility into and control over how data is used.
The COS provides a consistent configuration experience for users.
Developers don’t have to write code to manage configuration.

For data to be useful, however, it must be manipulated. We must be able to write programs that
run in personal clouds.

A Programming Model for Personal Clouds
As we discussed earlier, when personal clouds begin to act as peers with other network
services, people gain unprecedented power and leverage. Personal clouds can change how we
related to everything in our lives, rearrange how we buy and sell products and services, and
revolutionize how we communicate with each other.

For these changes to take place, personal clouds must be able to do more than store personal
data and mediate interactions with—as important as that is. Your personal cloud must run
applications for you, under your direction.

When we say “run programs” you might be tempted to think of the kinds of applications that
you run on your laptop or tablet: word processors, spreadsheets, and games. But it turns out
there’s already plenty of places to do that in the cloud and having those things run in your
personal cloud isn’t going to change much in your life.

Instead, we’re talking about programs that interact on your behalf with other online systems.
Those programs end up looking more like services in an OS. For example, you might have an
application that manages incoming notifications
(http://www.windley.com/archives/2011/12/notifications_in_a_personal_event_networks.shtml) and forwards
them to you in a channel you prefer based on context and content. Or you might have apps that
intermediates transactions with online merchants. You’ll have dozens, event hundreds of apps
that help you manage and control your personal data.

We believe that the most natural programming model for a cloud OS (COS) is event-driven.
Events indicate something happened—a state changed somewhere. Events often mean that an
application should act. Events provide a powerful way to create a metaprotocol that can be
used to define the various interaction scenarios
(http://www.windley.com/archives/2012/03/protocols_and_metaprotocols_what_is_a_personal_event_network.sht
ml) that will be present in a personal cloud.

Events augment the traditional request-response programming model of the Web with one that
drives action independent of the user. This is a critical component of any system that promises
to upset the power structure of the client-server model. David Siegel eloquently explains why in
Apple and the Cloud: A Cautionary Tale (http://www.xconomy.com/san-francisco/2012/04/06/apple-
cloud/?single_page=true) :

Adaptability is event driven. It’s very different from the demand-driven systems we
have today. If something happens in front of you, whether you’re on a bike path,
driving down the freeway, or flying at 30,000 feet, the system (all participants and
their equipment) adjusts. When you take a pill, don’t take a pill, hit a golf ball,
reschedule an appointment, get in your car, or walk near a store that has
something on your shopping list, the event triggers a response and keeps other
people up to date automatically. In an event-driven world, we don’t know which
apps we need, and it won’t matter. A piece of code sitting in the cloud that is
perhaps almost never used is nevertheless ready to respond to something

unusual, and we may only learn about this software service after we needed it. An
event-driven world is designed to change as the data changes.

As David points out, event-driven architectures are adaptable in ways that demand-driven
architectures aren’t. Making events work in the cloud on behalf of people requires and event-
based programming model specially designed for that task.

Personal Event Networks

The event-based programming model for the COS is called a personal event network (PEN).
Personal because each person—entity, really—has their own. A network because there is an
interconnected collection of programs interacting in the PEN via event-based protocols.

Personal Event Network block diagram

The basic unit of execution in the PEN is a rule. Rules connect events to actions. Applications in
the PEN are collections of rules, or rulesets.

The primary duty of the personal event network is scheduling rule execution based on incoming
events. The PEN does this by calculating an event salience tree for the PEN based on the
rulesets that the owner has activated. The event salience tree allows the PEN to quickly
determine which rules to execute for any given incoming event.

The PEN listens for events on event channels. A given PEN can have a virtually unlimited
number of event channels, allowing them to be assigned individually to event generators. This
gives the owner of the PEN complete control of inbound events. If an event generator isn’t

behaving as the owner would like, the event channel can be shut down without affecting any of
the other relationships that the PEN has.

The following diagram shows events coming into a PEN on various event channels:

Event channels raise events into the PEN

You can see that events might be coming from many different devices and services. Only a few
apps are shown. The Twilio service might be raising events around incoming phone calls or
SMS messages. REI, Visa, and the flowershop might be raising events about purchases or
outstanding orders, you car might be raising events about needed maintenance or its location,
and so on.

While the preceding diagram only shows three, there might be hundreds of rulesets installed in
the PEN watching for various events. Multiple rules can respond to the same event and rulesets
needn’t necessarily coordinate their responses to a given event. The architecture lends itself to
loosely couple collections of rules.

KRL: Linking Events and Actions

The PEN sets up a programming model based on events. Certainly we could respond to events
in any number of ways, but we have created a programming language, KRL, or the Kinetic Rule
Language (http://developer.kynetx.com/display/docs/Manual) , specifically for building applications in
the PEN.

KRL has several features that are carefully designed to make writing applications in the PEN
easier:

Rule-based programming model—Rules are a natural way to respond to events. Rules in KRL
are structured using the event-condition-action pattern. That is, rules link events to actions.
When a particular event occurs, if certain conditions are true, then take an action. The event and
action are fairly obvious components, but don’t overlook the condition. Conditions allow rules to
take into account context, rather than simply responding to what happened. Rules represent
composable chunks of functionality.

Event expressions—Rules are not limited to responding to only simple events. KRL contains an
event expression (http://developer.kynetx.com/display/docs/Event+Expressions) language that allows
developers to specify complex event scenarios. For example consider the following KRL event
expression:

 select when web pageview

 “/support/(\d+)” setting(issue_number)

 before email received

 subj.match(re/issue_number/)

This event expression indicates that the rule should be selected when a particular Web page is
viewed before an email is received. The expression can be thought of as filtering two event
streams, those for Web pages being viewed and those for emails being received.

But there’s more to this expression than a simple temporal relation between two event streams.
Notice that the issue_number is being set for the web:pageview event based on the page’s
URL and tested when the email event is received. This event expression is doing the equivalent
of an SQL join across the event streams, only matching when the web:pageview event and
the email:received event are related in a specific way. KRL event expressions are like SQL
for the events in a PEN.

Cloud-based identity context—Each PEN has an independent identity and the rulesets that
operate within it operate specifically for that identity. For example, KRL has variables with values
that persist from invocation to invocation of a given ruleset. These persistent variables are entity
specific—that is, the values stored are for the entity who owns the PEN. This is quite powerful
since it means that most applications don’t need an external data store. But more importantly,
we can use this entity-specific persistence to maintain online context for the owner of the PEN
including links to external data or services.

APIs look like libraries—KRL is designed to ease the burden of working with Web-based APIs
and their attendant protocols (e.g. OAuth). APIs form the libraries of the cloud OS. KRL makes it
easy to bind multiple APIs together in a ruleset. KRL provides primitives for handling the
predominant serialization standards like JSON, XML, and RSS, as well as providing modules for
popular APIs and the ability for programmers to create and share modules for other APIs.

At present the only way to create programs in a PEN is using KRL. That needn’t be the case. In
the future, other programming languages might be used. They would need frameworks to
understand events and the PEN’s persistence model. For now, however, it’s best to think of
KRL as the C of the PEN; KRL is how personal event networks are programmed.

Services

Just as a computer operating system provides common services—like printing—that any
program running on the OS can use, a cloud OS runs services for rulesets running in the
personal event network. The first of these services we have developed is for notifications
(http://www.windley.com/archives/2011/12/notifications_in_a_personal_event_networks.shtml) .

We have defined a draft Notification Event protocol

(http://developer.kynetx.com/display/docs/Notification+Event+Protocol) to show how notifications
messages will be handled in a personal event network. The standard allows developers to write
notification services. PENs will include a notification service by default, but the user can replace
or augment the default service handler by adding rulesets that respond to notification events. In
effect, the Notification Event protocol is the printer interface for a personal event network.

With a notification service in the PEN, KRL developers don’t have to build notifications into their
rulesets or worry about meeting the user’s demands with regard to how they want to be notified.
This makes writing rulesets easier because common operations and services can be handled by
the COS.

In addition to notifications, we anticipate common services around such things as contacts,
calendars, and to-do lists, and other key aspects of a user’s personal data.

Unprecedented Power

Event-driven programming models are powerful because of several important, fundamental
aspects (http://msdn.microsoft.com/en-us/library/dd129913.aspx) :

Receiver-Driven Flow Control—Once an event generator sends an event notification, its role in
determining what happens to that event is over. Downstream event processors may ignore the
event, may handle it as appropriate for their domain, or may propagate it to other processors. A
single event can induce multiple downstream activities as it and its effects propagate through
the event-processing network.
Unlike demand-driven interactions, event notifications do not include specific processing
instructions. For example, if my phone receives a call, it can send the phone:inbound_call()
event and the stereo system can interpret that as “turn down the volume”. In a demand-driven
architecture, my phone would send the turn_down_volume() instruction to the stereo instead.

Higher Decoupling—Compared with other system architecture styles, event-processing
systems exhibit higher decoupling along several important axes:

1. Because event notifications do not contain processing instructions, destination
information, and other details about how an event should be processed, the schema of
the event is simple and flexible allowing less coordination between event generator and
event processor. This makes events a convenient and legitimate means of creating
lightweight protocols
(http://www.windley.com/archives/2012/03/protocols_and_metaprotocols_what_is_a_personal_e
vent_network.shtml) .

2. Event generators do not necessarily need to know what processors are interested in the
event. The event generator sends notification of the event to the event channel and,
consequently, the associated event network, not to a specific processor.

3. System components can be added or removed with less coordination in the overall
system. Other components that want to respond in their own way to an
phone:inbound_call() event can join the network without the event generator or any
existing event handlers being affected. Similarly, components can be removed without
the event generator and other event handlers being updated. This allows functionality to
be layered.

Near Real-Time Propagation—Event processing systems work in real-time in contrast with
batch-oriented, fixed-schedule architectures. Events propagate through the network of event
processors soon after they happen and can further affect how those processors will interpret
and react to future events from the same or different event generators. Personal event networks
thus allow a more natural way to design and create real-time information systems. As more and
more information online gains a real-time component, this kind of processing becomes more and
more important.

Personal clouds, running a cloud OS, with location-independent, semantically correct access to
personal data from around the Web, and running applications that interact with other online
services for the owner’s benefit promise to usher in a new Web of unprecedented power and

convenience. This isn’t possible in systems that merely respond to user interaction from a
browser or an app as is done in current client-server systems. For this future to occur, people
need access to systems that operate 24/7 and see things—events—as they happen. That’s the
power of the event-based programming model embodied in personal event networks and made
possible with KRL.

Federating Personal Clouds
One of the most important aspects of personal clouds, as we envision them in this white paper ,
is their ability to federate. Without federation, personal clouds are as interesting as a computer
without a network connection. Federation is a fancy word to describe what comes naturally to
people: operating in a collective manner according to conventions or standards. In human
terms, we call this being social. Neighborhoods, cities, clubs, and even supply chains and
organized markets are federations of a sort.

In computer terms, federation usually refers to the interoperability of something: a network, a
chat system, and so on. The Internet, for example, is a federation of networks that interoperate.
One of the trends that seems inexorably at play in computer systems is the move from
centralized solutions to distributed ones. We find it easier to build centralized systems first, but
eventually we figure out how to decentralize them because that leads to not only better scaling
and performance, but also greatly increased flexibility. Federation is the key idea that allows
loose collections of decentralized systems to work in concert in pursuit of a common goal.
Federation is organization.

The programming model we discussed earlier is specifically designed to allow federation so that
multiple personal clouds can participate in a collective solution to a problem. The magic that
makes this possible is already built into the PEN: events, salience, and channels.

Personal event networks federate by subscribing to events from other PENs. Event channels
play a key role in event subscription. When one PEN wants to subscribe to the events of
another, it supplies an event channel and any other information that the publisher needs to
complete the subscription. KRL has built-in features
(http://www.windley.com/archives/2012/03/sending_events_in_parallel.shtml) for sending events to
subscribers.

An Example: On Call Teaching Assistants

To illustrate the use of event subscription for federation between personal clouds, consider the
following problem. Phil has two teaching assistants (TAs) for a class he teaches at BYU
(http://classes.windley.com/462/) . (There are some large classes that have dozens.) The TAs are
usually in the building, but not sitting at the TA cubicle. They are happy to be “on call” and
answer student questions almost any time if they don’t have to sit in the cubicle away from their
usual desk. The solution is an application that allows students to text a single “class number”
and request a meeting. Normally we might build that application as a stand-alone Web site, but
personal clouds provide an opportunity to “think differently” about the solution.

The following diagram shows how we approach the problem. The system is made up of
multiple, federated personal clouds. There is one for the class and one for each TA or instructor
who wants to participate.

TA clouds subscribe to events from the class cloud

The PEN in the class’ personal cloud contains a ruleset called the “On-Call TA Dispatcher”
(dispatcher). As its name implies, this ruleset listens for incoming text messages and
dispatches the requests to any subscribing TAs by raising a schedule:inquiry event. The TA
clouds each have an “On Call” ruleset that is listening for that event.

Note: Don’t let the term personal, as applied to the class’ cloud throw you off. We use personal
to refer to the idea that each event network is being operated on behalf of a specific entity—in
this case, the class. We think personal event network sounds much better than entity-specific
event network.

The scenario is straightforward:

1. The student sends a text to the class phone number requesting an appointment.
2. The dispatcher sees the event caused by the incoming text message and dispatches the

schedule:inquiry event to any subscribing PENs.
3. The oncall ruleset in the TA’s PEN, responds to schedule:inquiry events by checking the

TA’s calendar.
4. If the calendar indicates that the TA is currently on call, then the oncall ruleset raises a

notification:status event inside the PEN.
5. The notify ruleset sees the notification:status event and sends a text to the TA

indicating a student wants to meet.
6. If the TA is able to meet, she responds to the text.

Note that more than one TA might see the on-call request. Any TA who receives a notification
and is available to meet merely responds to the text and the student is notified that help is on
the way. If no TA is on call, the dispatcher ruleset tells the student that no one is on call right
now.

Event Subscription

Let’s explore the details of event subscription by looking at a little KRL. Subscribing to events
requires that the subscriber (i.e. the TAs) provide an event channel and other information to the

event publisher (i.e. the Class). Event channels have an identifier, called the event channel
identifier (ECI) that uniquely identifies the channel. The ECI is sufficient information to send an
event from one PEN to another. To keep things simple, imagine the ECI and other information
are stored in an array like so:

teaching_assistants =

 [{"name":"Phil",

 "phone":"801362XXXX",

 "eci":"072a3730-2e9a-012f-d2da-00163e411455",

 "calendar":"https://www.google.com/calendar/..."

 },

 {"name":"John",

 "phone":"801602XXXX",

 "eci":"fc435280-2b60-012f-cfeb-00163e411455",

 "calendar":"https://www.google.com/calendar/..."

 }

 ...

];

Given this subscriber list, the rule that dispatches events to the teaching assistants is fairly easy
to write. The rule is selected when the PEN sees a schedule:inquiry event:

rule dispatch {

 select when schedule inquiry

 foreach teaching_assistants setting (ta)

 event:send(ta,"schedule","inquiry")

 with attrs = {"from" : event:attr("From"),

 "message": event:attr("Body"),

 "code": math:random(99);

 };

 }

 always {

 raise explicit event subscribers_notified on final

 }

}

Notice that this rule loops over the teaching_assistants subscriber list using a foreach
and uses the action event:send() to send the schedule:inquiry event to each TA in the
list. When the rule is complete (note the on final guard condition in the postlude), it raises an
event called subscribers_notified so that any final processing can be done. The
event:send() action raises events to subscribing networks in parallel.

Federation through Subscription

The preceding example shows how multiple personal clouds, running an event-based cloud OS
can federate to accomplish a simple task for their owners. The class has a personal cloud that is
running rulesets to manage the class’ business. The TAs each have clouds running rulesets to
manage their business. These networks are owned and managed by different people. And yet,
through subscription, the student finds an on-call TA to help them with their problem. Federation
has allowed these various clouds to cooperate in solving a problem.

There are a few things to point out:

None of the rulesets know about the others. They are connected by through salience in a loosely

coupled manner.
The behavior of the rulesets isn’t specialized to an individual. The rulesets are general purpose.
All the personal data is retrieved from the personal data manager installed in the personal cloud.
The subscriptions are made using event channels that create a one-to-one link between
networks. This protects against SPAM and other communications abuses. The relationship can
be revoked as easily as it is created without affecting other relationships. The subscriber (TA)
controls what events it sees by managing event channels.
Any network that wants to see the schedule:inquiry events from the class personal event
network must subscribe to them. The publisher (Class) controls who sees the events by
managing the subscription list.
With the exception of the oncall ruleset, the TAs would likely have different rulesets installed in
their PEN. For example, each TA could have a different notify ruleset installed as long as they
each understood the notification event.

Federation arises from the properties of the programming model that we discussed earlier. Most
important among these are event channels and salience. Event channels provide a way for
PENs to communicate securely and privately. Salience ensures that events are routed to the
rules that need to see them regardless of their source.

Through event subscription, personal clouds can cooperate to automate interactions that in
other circumstances would necessarily be driven by the actions of their users. The On-Call TA
use case supplies several examples:

The TAs don’t have to check anything to see if students are waiting. The system merely notifies
them when they are.
Personal data like the TA’s own calendar modifies the overall behavior of the system.
TAs can subscribe or unsubscribe as they start work or leave employment without the students
or other TAs needing to change anything.
TAs are notified in the manner they choose, based on their personal preferences and the rulesets
they’ve activated.
The TAs are represented in the interaction by a system they control. This may not be important in
this scenario, but could matter a great deal in other scenarios, like those involving commerce.

Federation turns personal clouds into automated assistants. A personal cloud becomes a
personal valet that thinks about you—your needs, your quirks, your life. Rather than having to
get involved in all the gritty details of how things get done, you’re in a position of just making go
—no go decisions, like the TAs in the example above. As a new category of personal cloud apps
are written to take advantage of federated personal clouds, this new form of cloud-based
personal assistant will soon become as indispensable as a smart phone is today.

Moving Beyond Federation
As more and more of our interactions move online, we increasingly have need of an online place
that operates for us. Personal clouds must become more than appliances to achieve their real
potential. While appliances provide value, they can’t anticipate every need. They aren’t flexible
enough.

This paper has outlined a vision of personal clouds as general purpose virtual computers.
Making that vision real requires an operating system so that developers have a framework to
work within. Operating systems provide a core set of services around identity and data as well
as a programming model. We have set forth our vision for how those services will work.

Like smart phones, federated personal cloud networks will fundamentally change how
businesses and customers interact. While direct federation is a powerful tool, there are many
online interactions that require participation between parties who are unfamiliar with each other
and don’t trust each other. This is the subject of the next paper in this series: The Personal

Channel: Connecting Customers and Companies Like Never Before.

Finding Out More
You can discover more information about the concepts and technologies in this series from a
variety of sources including Project VRM (http://blogs.law.harvard.edu/vrm/) , Respect Network
(http://respectnetwork.com/) , Kynetx (http://www.kynetx.com) , and the blogs of the series authors
(listed in the biographies below). We also point you at Doc Searls’ book The Intention Economy
(http://www.amazon.com/The-Intention-Economy-Customers-Charge/dp/1422158527) and Phil Windley’s
book The Live Web (http://www.amazon.com/exec/obidos/ASIN/1133686680/windleyofente-20) .

If you’re interested in creating personal clouds, the Kinetic Rules Engine is open source
(https://github.com/kre/Kinetic-Rules-Engine/) . However, the easiest way to get started is using the
online service provided by Kynetx. You can try out personal clouds and the KRL programming
model for free by creating an account at Kynetx (http://www.kynetx.com) . Kynetx accounts are free
and you can develop multiple applications and run them without charge for non-commercial
use. Examples and documentation (http://developers.kynetx.com) are available online.

Rights
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/) .

Live Web Series Authors
Craig Burton is a Distinguished Analyst for KuppingerCole. As the creator of breakthrough
concepts like NetWare Open Systems, The Network Services Model, metadirectory, and The
Internet Services Model, Craig Burton is one of the leading visionaries and analysts in the
computing industry. He is a frequently consulted expert on new technologies and the process of
making software infrastructure ubiquitous.

Craig’s visionary understanding of new technologies and his familiarity with the needs of
technology users led him to identify the market for a metadirectory product and allowed him to
articulate the essential attributes of such a product. Craig invented the conceptual basis for
metadirectory over 20 years ago while leading Novell, Inc. to success.

Craig was one of the founding members of Novell, where he served as senior vice president of
corporate marketing and development. During his eight years with Novell, Craig’s unique market
strategies (which included the development of concepts such as file server technology,
hardware independence, fault tolerance, Universal NetWare Architecture and NetWare Open
Systems) resulted not only in market leadership for Novell, but also served to accelerate the
movement toward transparent multivendor computing.

When he co-founded The Burton Group in 1989, Craig began to study the concept of
metadirectory in earnest. As CEO, president and principal analyst of The Burton Group, Craig
provided independent market analysis on network computing technology and industry trends.

Craig’s contributions to computing have earned him recognition as one of the industry’s most
influential analysts. Since 1997, Craig Burton has been an independent analyst consulting with
many industry vendors and concentrating on the Internet Services Model and the paradox of
selling software infrastructure. Craig blogs at http://www.craigburton.com/
(http://www.craigburton.com/) .

Scott David is a partner working with the electronic commerce, tax, and intellectual property
practices at K&L Gates, LLP. He provides advice to firm clients on issues of international,
federal, state and local taxation; intellectual property licensing and structuring; compliance with
federal and state privacy and data security laws; structuring of online contracts, terms of use,
privacy policies and electronic payment and tax administration systems; corporate, partnership
and limited liability company organization and affiliation structuring; technology development
and transfer; participation in standards setting organizations; and non–profit and tax–exempt
status and related issues. He regularly counsels the firm’s intellectual property, high technology,
telecommunications, on–line commerce, power generation, construction, retail, manufacturing,
service sector, health care, governmental, financial sector and other clients.

Drummond Reed is co-founder and Chairman of Respect Network Corporation (RNC) and
Managing Director of the Respect Network. He is co-author with Scott David, Joe Johnston, and
Marc Coluccio of the Respect Trust Framework upon which RNC’s Connect.Me (http://connect.me)
reputation network is based. Drummond has also served as co-chair of the OASIS XDI Technical
Committee since 2004.

Prior to RNC, Drummond was Executive Director of two industry foundations: the Information
Card Foundation and the Open Identity Exchange. He has also served as a founding board
member of the OpenID Foundation, ISTPA, XDI.org, and Identity Commons. In 2002 he was a
recipient of the Digital Identity Pioneer Award from Digital ID World. Drummond blogs on digital
identity, personal data, personal clouds, and trust frameworks at http://equalsdrummond.name
(http://equalsdrummond.name) .

Doc Searls In The World is Flat, Thomas L. Friedman calls Doc Searls “one of the most
respected technology writers in America.” Searches for Doc on Google tend to bring up piles of
results. Doc is Senior Editor of Linux Journal, the premier Linux monthly and one of the world’s
leading technology magazines. He is also co-author of The Cluetrain Manifesto
(http://www.amazon.com/The-Cluetrain-Manifesto-Anniversary-Edition/dp/0465024092/) , a book that was
Amazon’s #1 sales & marketing bestseller for thirteen months (“Cluetrain” now appears in more
than 5,000 books), and author of The Intention Economy: When Customers Take Charge
(http://www.amazon.com/The-Intention-Economy-Customers-Charge/dp/1422158527/) from Harvard
Business Review Press.

Doc serves as a fellow with the Center for Information Technology and Society at the University
of California, Santa Barbara and is an alumnus Fellow with the Berkman Center for Internet and
Society at Harvard University, where he continues to lead ProjectVRM, which has the immodest
ambition of liberating customers from entrapment in vendor silos and improving markets by
creating a productive balance of power in relationships between supply and demand. Doc is a
pioneering and highly quoted blogger. J.D. Lasica, author of Darknet, calls Doc “one of the deep
thinkers in the blog movement.”

As a writer, Doc’s byline has appeared in Harvard Business Review, OMNI, Wired, PC Magazine,
The Standard, The Sun, Upside, Release 1.0, Wired, The Globe & Mail and many other
publications. He is @dsearls on Twitter.

Phillip J. Windley is the Founder and Chief Technology Officer of Kynetx. Kynetx is a personal
cloud vendor, providing the underlying technology for creating, programming, and using
personal event networks using KRL and semantic data interchange via XDI. He is also an
Adjunct Professor of Computer Science at Brigham Young University where he teaches courses
on reputation, digital identity, large-scale system design, and programming languages. Phil
writes the popular Technometria blog (http://www.windley.com) and is a frequent contributor to
various technical publications. He is also the author of the books The Live Web
(http://www.amazon.com/exec/obidos/ASIN/1133686680/windleyofente-20) published by Course
Technology in 2011 and Digital Identity (http://www.amazon.com/dp/0596008783/windleyofente-20)
published by O’Reilly Media in 2005.

Prior to joining BYU, Phil spent two years as the Chief Information Officer (CIO) for the State of
Utah, serving on Governor Mike Leavitt’s Cabinet and as a member of his Senior Staff. Before
entering public service, Phil was Vice President for Product Development and Operations at
Excite@Home. He was the Founder and Chief Technology Officer (CTO) of iMALL, Inc. an early
creator of electronic commerce tools. Phil serves on the Boards of Directors and Advisory
Boards for several high-tech companies. Phil received his Ph.D. in Computer Science from Univ.
of California, Davis in 1990.

